Fiscal-Monetary Interactions and the FTPL:

"Some Unpleasant Monetarist Arithmetic" Sargent and Wallace (1981)

> Carlo Galli uc3m & CEPR

Topics in Macroeconomics A uc3m, spring 2025

Motivation

In his AEA presidential address in 1968, Friedman said that monetary policy cannot affect

- output and unemployment
- the real rate of return on securities

Sargent and Wallace (1981) show that, under some condition, mp cannot even affect inflation!

- OLG model
- population and income grow at constant rate n

- storage technology with real return r > n
- upper bound on per-capita real debt stock
- "monetarist" economy: monetary base connected to P_t via quantity-theory money demand

Model

At period t, $N_{1,t}$ poor agents and $N_{2,t}$ rich agents. $N_{1,t} + N_{2,t} = N_t$. All Ns grow at n

Poor have endowments α_1, α_2 , cannot use storage or bonds, save through money

Rich have endowments β , 0, will save in highest return asset

Problem of class j, generic savings W and RoR ρ

$$\max_{c^{y},c^{o},W} c^{y}c^{o}$$

s.t. $c^{y} = e^{y} - W$
 $c^{o} = e^{o} + W\rho$

Savings function $W = \frac{1}{2} \left(e^{y} - \frac{e^{o}}{\rho} \right)$

Focus on case where $P_t/P_{t+1} < 1 + r$, so only the poor hold money

Asset demand

Savings function $W = \frac{1}{2} \left(e^y - \frac{e^\circ}{\rho} \right)$ Focus on case where $P_t / P_{t+1} < R$, so only the poor hold money

Money demand by the poor + money market clearing

$$\frac{M_t}{P_t} = N_{1,t} \frac{1}{2} \left(\alpha_1 - \alpha_2 \frac{P_{t+1}}{P_t} \right)$$

For simplicity, for now assume $\alpha_2 = 0 \Rightarrow$ pure quantity theory, money stock determines P_t

The rich save $\beta/2$. If bonds yield r, then total bond demand $\leq N_{2,t}\beta/2$ \Rightarrow real bonds per capita are capped at $\frac{N_{2,t}}{N_t}\frac{\beta}{2}$

Government

Govt budget

$$d_t = b_t - b_{t-1}(1+r) + rac{M_t - M_{t-1}}{P_t}$$

in per-capita terms $\tilde{x}_t = x_t/N_t$

$$\begin{split} \tilde{d}_t &= \tilde{b}_t - \tilde{b}_{t-1} \frac{1+r}{1+n} + \tilde{m}_t - \frac{\tilde{m}_{t-1}}{(1+n)} \frac{P_{t-1}}{P_t} \\ &= \tilde{b}_t - \tilde{b}_{t-1} \frac{1+r}{1+n} + \frac{\alpha_1}{2} \left(1 - \frac{1}{(1+n)} \frac{P_{t-1}}{P_t} \right) \end{split}$$

Let \mathcal{T} be the time at which per-capita debt hits the debt ceiling

Monetary policy

• for
$$t < T$$
, constant money growth $M_{t+1} = M_t(1+\theta)$. Inflation is $\frac{P_{t+1}}{P_t} = \frac{1+\theta}{1+n}$

• for
$$t \geq T$$
, M_t set to keep $ilde{b}_t = ilde{b}_T$

Inflation before vs after T

Step 1: study how inflation after T ("future") depends on \tilde{b}_T Step 2: study how \tilde{b}_T depends on inflation/money growth/monetary policy before T ("now")

Step 1: for
$$t \ge T$$

 $\tilde{b}_T(\theta) \frac{r-n}{1+n} + \tilde{d}_t = \frac{\alpha_1}{2} \left(1 - \frac{1}{(1+n)} \frac{P_{t-1}}{P_t} \right)$

since r > n, then higher $b_T(\theta)$ requires higher inflation

- pc deficit = pc primary deficit (\tilde{d}_t) + pc debt service $(\tilde{b}_T(\theta) rac{r-n}{1+n})$
- higher terminal debt \rightarrow higher terminal deficit to be financed \rightarrow higher future seigniorage revenues needed
- future inflation is increasing in the future primary deficit

Inflation before vs after T

Step 2: for t < T, how does heta affect $ilde{b}_T(heta)$?

Take the period-by-period govt BC

$$\widetilde{d}_t = \widetilde{b}_t - \widetilde{b}_{t-1} \frac{1+r}{1+n} + \frac{lpha_1}{2} \frac{ heta}{1+ heta}$$

Iterate govt BC forward from the initial period (t = 0)

$$\tilde{b}_{\mathcal{T}}(\theta) = \sum_{s=0}^{T-1} \left(\frac{1+r}{1+n}\right)^s \left(\tilde{d}_{T-s} - \frac{\alpha_1}{2}\frac{\theta}{1+\theta}\right) + \left(\frac{1+r}{1+n}\right)^T \tilde{b}_0$$

so a lower θ implies a higher $\tilde{b}_{\mathcal{T}}(\theta)$

- \tilde{b}_T depends on deficits from t = 0 to t = T
- tighter money now \rightarrow lower seigniorage/inflation now \rightarrow higher pc debt at $T \rightarrow$ as we saw, higher future inflation!
- what is happening is monetary dominance now and fiscal dominance in the future

Inflation before vs after T

Can tight money now mean not only higher future inflation, but also higher inflation now?

Go back to more general specification where money demand depends on future inflation

$$\frac{M_t}{N_{1,t}P_t} = \frac{1}{2} \left(\alpha_1 - \alpha_2 \frac{P_{t+1}}{P_t} \right)$$

Iterating forward we get an expression for the price level

$$P_t = \frac{2}{\alpha_1} \sum_{j=0}^{\infty} \left(\frac{\alpha_2}{\alpha_1}\right)^j \frac{M_{t+j}}{N_{t+j}}$$

so the current price level (and inflation) depends on money today and in the future. If future weights more than present (e.g. low T), then tight money now \rightarrow high inflation now

This is the "tight money paradox" of Loyo (1999), and a provocative question for today's world

References

- Loyo, Eduardo, "Tight Money Paradox on the Loose: A Fiscal Hyperinflation," 1999. Mimeo, Harvard University.
- Sargent, Thomas J. and Neil Wallace, "Some unpleasant monetarist arithmetic," *Quarterly Review, Federal Reserve Bank of Minneapolis*, 1981, *Fall issue.*